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Abstract. This paper attempts to address the object repetition issue in
patch-wise higher-resolution image generation. We propose AccDiffusion,
an accurate method for patch-wise higher-resolution image generation
without training. An in-depth analysis in this paper reveals an identi-
cal text prompt for different patches causes repeated object generation,
while no prompt compromises the image details. Therefore, our AccDif-
fusion, for the first time, proposes to decouple the vanilla image-content-
aware prompt into a set of patch-content-aware prompts, each of which
serves as a more precise description of an image patch. Besides, AccDiffu-
sion also introduces dilated sampling with window interaction for better
global consistency in higher-resolution image generation. Experimental
comparison with existing methods demonstrates that our AccDiffusion
effectively addresses the issue of repeated object generation and leads to
better performance in higher-resolution image generation. Our code is
released at https://github.com/lzhxmu/AccDiffusion.
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1 Introduction

Diffusion models have garnered significant attention and made notable advance-
ments with the emergence of works such as DDPM [10], DDIM [28], ADM [3],
and LDMs [21], owing to their outstanding generative ability and wide range of
applications. However, stable diffusion models entail tremendous training costs
primarily due to the large number of timestamps required and the quadratic
relationship between computing costs and resolution. Consequently, it is com-
mon to limit the resolution to a relatively low level, such as 5122 for SD 1.5 [20]
and 10242 for SDXL [17], during training. Even at such low resolution, sta-
ble diffusion 1.5 still entails over 20 days of training on 256 A100 GPUs [20].
Nonetheless, high-resolution generation finds widespread application in real-life
scenarios, such as advertisements. The demand for generating high-resolution
images clashes with the expensive training costs involved.
⋆ Corresponding author
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Fig. 1: Comparison of image quality and GPU overhead for existing higher-resolution
generation methods. The GPU memory of Attn-SF [12] and ScaleCrafter [6] signifi-
cantly increases with resolution, while patch-wise denoising methods ,e.g ., MultiDiffu-
sion [1] and DemoFusion [4] suffer object repetition issue. Best viewed zoomed in.

Therefore, researchers have shifted their focus to training stable diffusion
models with low resolution and subsequently applying fine-tuning [30, 33] or
training-free [1, 4, 6, 14] methods to achieve image generation extrapolation. A
naive approach is to directly use pre-trained stable diffusion models to generate
higher-resolution images. However, the resulting images from this approach are
proved to suffer from issues such as object repetition and inconsistent object
structures [4, 12]. Previous methods attempted to achieve image generation ex-
trapolation from the perspectives of attention entropy [12] or the receptive field
of stable diffusion model [6]. However, these methods have been proven to be
less practical in two folds, as shown in Fig. 1(b,c): (1)a substantial increase in
GPU memory consumption [33] as the resolution rises and (2) poor quality of the
generated images [4]. Thanks to stable diffusion’s outstanding local detail gen-
eration ability, recent works [1, 4, 14] have started conducting higher-resolution
image generation in a patch-wise fashion for the sake of less GPU memory con-
sumption. Previous works MultiDiffusion [1] and SyncDiffusion [14] fuse multiple
overlapped patch-wise denoising results to generate higher-resolution panoramic
images without a seam. However, the direct application of these approaches
to generate higher-resolution object-centric images leads to repeated and dis-
torted results lacking global semantic coherence, as shown in Fig. 1(d). Recently,
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Fig. 2: Image-content-aware prompt v.s. Patch-content-aware prompt.

DemoFusion [4] has introduced global semantic information into the patch-wise
higher-resolution image generation through residual connection and dilated sam-
pling. It only partially solves the problem of repeated object generation and still
exhibits small object repetition in ultra-high image generation as depicted in
Fig. 1(e). How to resolve the issue of repeated object generation completely in
patch-wise higher-resolution image generation remains an unresolved problem.

In this paper, our in-depth analysis of DemoFusion [4] indicates, as illus-
trated in Fig. 2(a), small object repetition generation is the adversarial outcome
of an identical text prompt on all patches, encouraging to generate repeated
objects, and global semantic information from residual connection and dilated
sampling, suppressing the generation of repeated objects. To address the above
issues, we propose AccDiffusion, an accurate method for higher-resolution image
generation, with its major novelty in two folds:

(1) To completely solve small object repetition, as illustrated in Fig. 2(b),
we propose to decouple the vanilla image-content-aware prompt into a set of
patch-content-aware substrings, each of which serves as a more precise prompt
to describe the patch contents. Specifically, we utilize the cross-attention map
from the low-resolution generation process to determine whether a word token
should serve as the prompt for a patch. If a word token has a high response in
the cross-attention map region corresponding to the patch, it should be included
in the prompt, and vice versa.

(2) Through visualization, we observe that the dilated sampling operation in
DemoFusion generates globally inconsistent and noisy information, disrupting
the generation of higher-resolution images. Such inconsistency stems from the
independent denoising of dilation samples without interaction. To address this,
we employ a position-wise bijection function to enable interaction between the
noise from different dilation samples. Experimental results show that our dilated
sampling with interaction leads to the generation of smoother global semantic
information (see Fig. 3(c,d)).



4 Z.Lin et al.

We have conducted extensive experiments to verify the effectiveness of Ac-
cDiffusion. The qualitative results demonstrate that AccDiffusion effectively ad-
dresses the issue of repeated object generation in higher-resolution image gen-
eration. And the quantitative results show that AccDiffusion achieves state-of-
the-art performance in training-free image generation extrapolation.

2 Related Work

2.1 Diffusion Models

Diffusion models [3,10,21,28] are generative probabilistic models that transform
Gaussian noise into samples through gradual denoising steps. DDPM [10] is a pi-
oneering model that demonstrates impressive image generation capabilities using
Markovian forward and reverse processes. Based on DDPM, DDIM [28] utilizes
non-Markovian reverse processes to decrease sampling time effectively. Further-
more, LDMs [21] incorporate the diffusion process into the latent space, resulting
in efficient training and inference. Subsequently, a series of LDMs-based stable
diffusion models are open-sourced and achieve state-of-the-art image synthesis
capability. This has led to widespread applications in various downstream gen-
erative tasks, including images [3, 10, 16, 22, 28], audio [5, 11], video [9, 26] and
3D objects [15,18,31], etc.

2.2 Training-Free Higher-Resolution Image Generation

Although stable diffusion demonstrates impressive results, its training cost limits
low-resolution training and thus generates low-fidelity images when the inference
resolution differs from the training resolution [4, 6, 12]. Recent works [1, 4, 6, 12]
have attempted to utilize pre-trained diffusion models for generating higher-
resolution images. These works [1, 4, 6, 12] can be broadly categorized into two
categories: direct generation [6, 12] and indirect generation [1, 4]. Direct gener-
ation methods scale the input of the diffusion models to the target resolution
and then perform forward and reverse processes directly on the target resolu-
tion. These kinds of methods require modifications to the fundamental architec-
ture, such as adjusting the attention scale factor [12] and the receptive field of
convolutional kernels [6], to prevent repetition generation. However, the gener-
ated images fail to yield the higher-resolution detail desired. Additionally, direct
generation methods encounter out-of-memory errors when generating ultra-high
resolution images (e.g . 8K) on consumer-grade GPUs, due to the quadratic in-
crease in memory overhead as the latent space size grows. Indirect generation
methods generate higher-resolution images through multiple overlapped denois-
ing paths of LDMs and are capable of generating images of any resolution on
consumer-grade GPUs. However, these mothods [1, 14] suffer from local repeti-
tion and structural distortion. Du et al . [4] tried to address repeated generation
by introducing global structural information from lower-resolution image.
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3 Method

3.1 Backgrounds

Latent Diffusion Models (LDMs). LDMs [3] apply an autoencoder E to
encode an image x0 ∈ RH×W×3 into a latent representation z0 = E(x0) ∈
Rh×w×c, where the regular diffusion process is constructed as:

zt =
√
ᾱtz0 +

√
1− ᾱtε, ε ∼ N (0, I), (1)

where {αt}Tt=1 is a set of prescribed variance schedules and ᾱt = Πt
i=1αi. To

perform conditional sequential denoising, a network εθ is trained to predict added
noise, constrained by the following training objective:

min
θ

EE(x0),ε∼N (0,1),t∼Uniform(1,T )

[ ∥∥ε− εθ
(
zt, t, τθ(y)

)∥∥2
2

]
, (2)

in which τθ(y) ∈ RM×dτ is an intermediate representation of condition y and M
is the number of word tokens in the prompt y. The τθ(y) is then mapped to keys
and values in cross-attention of U-Net εθ:

Q = WQ · φ(zt), K = WK · τθ(y), V = WV · τθ(y),

M = Softmax(
QKT

√
d

), Attention(Q,K, V ) = M · V.
(3)

Here, for simplicity, we omit the expression of multi-head cross-attention
and φ(zt) ∈ RN×dϵ denotes an intermediate representation of noise in the U-
Net. Here N = h × w represents the pixel number of the latent noise zt. WQ ∈
Rd×dϵ ,WK ∈ Rd×dτ , and WV ∈ Rd×dτ are learnable projection matrices. M ∈
RN×M is the cross-attention maps.

In contrast, the denoising process aims to recover the cleaner version zt−1

from zt by estimating the noise, which can be expressed as:

zt−1 =

√
αt−1

αt
zt +

(√
1

αt−1
− 1−

√
1

αt
− 1

)
· εθ
(
zt, t, τθ(y)

)
. (4)

During inference, a decoder D is employed at the end of the denoising process
to reconstruct the image from the latent representation x0 = D(z0).

Patch-wise Denoising. MultiDiffusion [1] achieve higher-resolution image
generation by fusing multiple overlapped denoising patches. In simple terms,
given a latent representation Zt ∈ Rh′×w′×c of higher-resolution image with
h′ > h and w′ > h, MultiDiffusion utilizes a shifted window to sample patches
from Zt and results in a series of patch noise {zit}

P1
i=1, where zit ∈ Rh×w×c

and P1 = (h
′−h
dh

+ 1) × (w
′−w
dw

+ 1) is the total number of patches, dh and dw
is the vertical and horizontal stride, respectively. Then, MultiDiffusion performs
patch-wise denoising via Eq. (4) and obtains {zit−1}

P1
i=1. Then {zit−1}

P1
i=1 is recon-

structed to get Zt−1, where the overlapped parts take the average. Eventually, a
higher-resolution image can be obtained by directly decoding Z0 into image X0.
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(d)(c)(b)(a)

Fig. 3: Results of higher-resolution image generation. (a) The result of DemoFusion
without text prompt. (b)The result of DemoFusion without residual connection and
dilated sampling. (c) The result of dilated sampling without window interaction. (d)The
result of our dilated sampling with window interaction.

Based on MultiDiffusion, DemoFusion [4] additionally introduces: 1) progressive
upscaling to gradually generate higher-resolution images; 2) residual connection
to maintain global consistency with the lower-resolution image by injecting the
intermediate noise-inversed representation. 3) dilated sampling to enhance global
semantic information of higher-resolution images.

3.2 In-depth Analysis of Small Object Repetition

DemoFusion demonstrates the possibility of using pre-trained LDMs to generate
higher-resolution images. However, as shown in Fig. 1(e), small object repetition
continues to challenge the performance of DemoFusion.

Delving into an in-depth analysis, we respectively: 1) remove the text prompt
during higher-resolution generation of DemoFusion and the resulting Fig. 3(a) in-
dicates the disappearance of repeated objects but more degradation in details. 2)
remove the operations of residual connection & dilated sampling in DemoFusion
and the resulting Fig. 3(b) denotes severe large object repetition. Therefore, we
can make a safe conclusion that small object repetition is the adversarial outcome
of an identical text prompt on all patches and operations of residual connection &
dilated sampling. The former encourages to generate repeated objects while the
latter suppresses the generation of repeated objects. Consequently, DemoFusion
tends to generate small repeated objects.

Overall, text prompts play a significant role in image generation. It is not
a viable solution to address small object repetition by removing text prompts
during the higher-resolution generation, as it would lead to a decline in image
quality. Instead, we require more accurate prompts specifically tailored for each
patch. That is, if an object is not present in a patch, the corresponding word in
the text prompts should not serve as a prompt for that patch.

To this end, in Sec. 3.3, we eliminate the restriction of having an identical text
prompt for all patches in previous patch-wise generation approaches. Instead, we
generate more precise patch-content-aware prompts that adapt to the content of
different patches. In Sec. 3.4, we introduce how to enhance the global structure
information to generate higher-resolution images without repetition.
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(b)

“Astronaut” “on” “mars” “during” “sunset” “ .”

(a)

“Astronaut” “on” “mars” “during” “sunset” “ .”

(c)

NullAstronaut

Image Attention Map Mask Eroded Mask Dilated Mask Patch-level prompt

Fig. 4: Visualization of averaged attention map from the up blocks and down blocks in
U-Net. We reshape the attention map into a 2D shape before visualization. (a) Cross-
attention map visualization using open source code [7]. (b) Highly responsive regions of
each word. (c) The illustration of the patch-level prompt generation process, including
morphological operations to eliminate small connected areas. Here we use the word
“Astronaut” as an example. All words in the prompt will go through the above process.

3.3 Patch-Content-Aware Prompts

Considering the significance of text prompt in higher-resolution generation, we
explore patch-content-aware substring set {γi}P1

i=1 of the entire text prompt, each
of which is responsible for injecting a condition to the corresponding patch. In
general, it is challenging to know in advance what content a patch generates, but
in DemoFusion [4], the global information from low-resolution image is injected
into the high-resolution image generation through residual connections. There-
fore, the structure of the generated higher-resolution image is similar to that of
the low-resolution image. This inspires us to decide patch contents from the low-
resolution image. A direct but cumbersome approach is to manually observe the
patch content of low-resolution image and then set the prompt for each patch,
which undermines the usability of stable diffusion. Another approach is to use
SAM [13] to segment the upscaled low-resolution image and determine whether
each object appears in the patch, introducing huge storage and computational
costs of the segmentation model. How to automatically generate patch-content-
aware prompts without external models is the key to success.

Inspired by image editing [7], instead we consider the cross-attention maps
in low-resolution generation M ∈ RN×M , to determine patch-content-aware
prompts. Recall N represents the pixel number of the latent noise zt and M
denotes the number of word tokens in the prompt y. Thus, the column M:,j

represents the attentiveness of latent noise to the j-th word token. The basic
principle lies in that the attentiveness (Mi,j) of image regions is mostly higher
than others if it is attended by the j-th word token, as shown in Fig. 4(a). To



8 Z.Lin et al.

find the highly relevant region of each word token, we convert the attention map
M into a binary mask B ∈ RN×M as:

Bi,j =

{
1, if Mi,j > M:,j ,
0, otherwise, (5)

where i and j enumerate N and M , respectively. The threshold M:,j is the mean
of M:,j , which design is elaborated in Sec. 4.4. Regions with values above the
threshold are considered highly responsive, while regions with values below the
threshold are considered less responsive.

Next, we obtain word-level masks {Bj}Mj=1 using the following equation:

B̂j = Reshape(B:,j , (ha, wa)), (6)

where ha = h
s and wa = w

s represent the height and width of the attention
map, respectively. Recall h and w represent the height and width of the noise,
respectively. The “s” corresponds to the down-sampling scale in the correspond-
ing block of the U-Net model. The mask Bj oriented for the j-th word token is
reshaped into a 2d shape for further processing.

After obtaining the highly responsive regions for each word, we observe that
they contain many small connected areas, as shown in Fig. 4(b). To alleviate the
influence of these small connected areas, we apply the opening operation O(·)
from mathematical morphology [27], resulting in the final mask for each word,
as shown in Fig. 4(c). The processed mask {B̃j}Mj=1 can be formulated as:

B̃j = O(B̂j) = ω(δ(B̂j)), (7)

where δ(·) and ω(·) is erosion operation and dilation operation, respectively.
Next, we interpolate B̃j ∈ Rha×wa to B̃′

j ∈ Rh′
a×w′

a , where h′
a = h′

s and w′
a = w′

s .
Recall h′ and w′ are the size of higher-resolution latent representation as defined
in Sec. 3.1. Inspired by MultiDiffusion [1], we use a shifted window to sample
patches from B̃′

j , resulting in a series of patch masks {{mi
j}

P1
i=1}Mj=1, where

mi
j ∈ Rha×wa and P1 is the total number of patches. It is important to note that

each mj
i corresponds to a specific patch noise zit.

Recall if an object is not present in a patch, the corresponding word token
in the text prompts should not serve as a prompt for that patch. So, we can
determine the patch-content-aware prompt γi, a sub-sequence of prompt y, for
each patch zit using the following formulation:{

yj ∈ γi, if
∑

(mi
j):,:

ha×wa
> c,

yj /∈ γi, otherwise,
(8)

where j and i enumerates M and P1, respectively. The pre-given hyper-parameter
c ∈ (0, 1) determines whether a highly responsive region’s proportion of a word yj
exceeds the threshold for inclusion in the prompts of patch zit. We then concate-
nate all words that should appear in a patch together, resulting in patch-content-
aware prompts {γi}P1

i=1 for noise patches {zit}
P1
i=1 during patch-wise denoising.
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Fig. 5: Illustration of dilated sampling with window interaction: 8×8 higher-resolution
and 4×4 low-resolution. The number {1, 2, 3, 4} represent the different positions within
the same window (same color). The interaction operation is conducted in the window.

3.4 Dilated Sampling with Window Interaction

Recall Zt ∈ Rh′×w′×c stands for the latent representation of a higher-resolution
image in Sec. 3.1. In this section, we continue proposing dilated sampling with
window interaction, for a set of patch samples {Dk

t }
P2

k=1, to improve the global
semantic information in the latent representation Zt. In DemoFusion [4], each
sample Dk

t is a subset of the latent representation Zt, formulated as:

Dk
t = (Zt)i::hs,j::ws,:, (9)

where k = i×ws+ j+1, and k ranges from 1 to P2. The variables i and j range
from 0 to hs − 1 and ws − 1, respectively. The sampling stride is determined
by hs = h′

h and ws = w′

w . Recall {h′, w′} and {h,w} are the height and width
of higher and low resolution latent representation. DemoFusion independently
performs denoising on Dt via Eq. (4) and obtains Dt−1 ∈ RP2×h×w×c, where
P2 = hs × ws. Then {Dk

t−1}
P2

k=1 is reconstructed as Gt−1 ∈ Rh′×w′×c and added
to patch-wise denoised latent representation Zt−1 using:

Ẑt−1 = (1− η) · Zt−1 + η ·Gt−1, (10)

where (Gt−1)i::hs,j::ws,: = Dk
t−1 and η decreases from 1 to 0 using a cosine sched-

ule. Due to the lack of interaction between different samples during the denoising
process, the global semantic information is non-smooth, as depicted in Fig. 3(c).
The sharp global semantic information disturbs the higher-resolution generation.

To solve above issue, as illustrated in Fig. 5, we enable window interaction be-
tween different samples before each denoising process through bijective function:

Dt
k,h,w = Dt

fh,w
t (k),h,w, fh,w

t : {1, 2, · · · , P2} ⇒ {1, 2, · · · , P2}, (11)

where fh,w
t is bijective function, and the mapping varies based on the position

or time step. We then perform normal denoising progress on {Dk
t }

P2

k=1 to obtain
{Dk

t−1}
P2

k=1. Before applying Eq. (10) to {Dk
t−1}

P2

k=1, we use the inverse mapping

(fh,w
t )

−1
of fh,w

t to recover the position as:

Dt−1
k,h,w = Dt−1

(fh,w
t )

−1
(k),h,w, (fh,w

t )
−1

: {1, 2, · · · , P2} ⇒ {1, 2, · · · , P2}.
(12)



10 Z.Lin et al.

4 Experimentation

4.1 Experimental Setup

AccDiffusion is a plug-and-play extension to stable diffusion without additional
training costs. We mainly validate the feasibility of AccDiffusion using the pre-
trained SDXL [17]. More results for other stable diffusion variants are in the sup-
plementary material. AccDiffusion follows the pipeline of DemoFusion [4] (SOTA
higher-resolution generation) and uses the patch-content-aware prompts during
the progress of higher-resolution image generation. Additionally, AccDiffusion
enhances dilated sampling with window interaction. For fairness, we adhere to
the default setting of DemoFusion, as described in the supplementary material. In
Sec. 4.2, the hyper-parameter c in Eq. (8) is set to 0.3. Considering the training-
free nature of AccDiffusion, the methods we compare include: SDXL-DI [17],
Attn-SF [12], ScaleCrafter [6], MultiDiffusion [1], and DemoFusion [4].
We do not compare with image super-resolution methods [23,29,32] which take
images as input and have been proven to lack texture details [4, 6].

4.2 Quantitative Comparison

For quantitative comparison, we use three widely-recognized metrics: FID (Frechet
Inception Distance) [8], IS (Inception Score) [24], and CLIP Score [19]. Specif-
ically, FIDr measures the Frechet Inception Distance between generated high-
resolution images and real images. ISr represents the Inception Score of generated
high-resolution images. Given that FIDr and ISr necessitate resizing images to
2992, which may not be ideal for assessing high-resolution images. Motivated
by [2, 4], we crop 10 local patches at 1× resolution from each generated high-
resolution image and subsequently resize them to calculate FIDc and ISc. The
CLIP score measures the cosine similarity between image embedding and text
prompts. We randomly selected 10,000 images from the Laion-5B [25] dataset
as our real images set and randomly chose 1,000 text prompts from Laion-5B as
inputs for AccDiffusion to generate a set of high-resolution images.

As shown in Table 1, AccDiffusion achieves the best results and obtains state-
of-the-art performance. Since the implementation of AccDiffusion is based on
DemoFusion [4], it exhibits similar quantitative results and inference times with
DemoFusion. However, AccDiffusion outperforms DemoFusion due to its more
precise patch-content-aware prompt and more accurate global information intro-
duced by dilated sampling with interaction, especially in high-resolution gener-
ation scenarios. Compared to other training-free image generation extrapolation
methods, the quantitative results of AccDiffusion are closer to quantitative re-
sults calculated at pre-trained resolutions (1024 × 1024), demonstrating the
excellent image generation extrapolation capabilities of AccDiffusion. Note that
FID, IS, and CLIP-Score do not intuitively reflect the degree of repeated gener-
ation in the resulting images, so we conduct a qualitative comparison to validate
the effectiveness of AccDiffusion in eliminating repeated generation.



An Accurate Method for Higher-Resolution Image Generation 11

Table 1: Comparison of quantitative metrics between different training-free image gen-
eration extrapolation methods. We use bold to emphasize the best result and underline
to emphasize the second best result.

Resolusion Method FIDr ↓ ISr ↑ FIDc ↓ ISc ↑ CLIP↑ Time

1024 × 1024 (1×) SDXL-DI 58.49 17.39 58.08 25.38 33.07 <1 min

2048 × 2048 (4×)

SDXL-DI 124.40 11.05 88.33 14.64 28.11 1 min
Attn-SF 124.15 11.15 88.59 14.81 28.12 1 min
MultiDiffusion 81.46 12.43 44.80 20.99 31.82 2 min
ScaleCrafter 99.47 12.52 74.64 15.42 28.82 1 min
DemoFusion 60.46 16.45 38.55 24.17 32.21 3 min
AccDiffusion 59.63 16.48 38.36 24.62 32.79 3 min

3072 × 3072 (9×)

SDXL-DI 170.61 7.83 112.51 12.59 24.53 3 min
Attn-SF 170.62 7.93 112.46 12.52 24.56 3 min
MultiDiffusion 101.11 8.83 51.95 17.74 29.49 6 min
ScaleCrafter 131.42 9.62 105.79 11.91 27.22 7 min
DemoFusion 62.43 16.41 47.45 20.42 32.25 11 min
AccDiffusion 61.40 17.02 46.46 20.77 32.82 11 min

4096 × 4096 (16×)

SDXL-DI 202.93 6.13 119.54 11.32 23.06 9 min
Attn-SF 203.08 6.26 119.68 11.66 23.10 9 min
MultiDiffusion 131.39 6.56 61.45 13.75 26.97 10 min
ScaleCrafter 139.18 9.35 116.90 9.85 26.50 20 min
DemoFusion 65.97 15.67 59.94 16.60 33.21 25 min
AccDiffusion 63.89 16.05 58.51 16.72 33.79 26 min

4.3 Qualitative Comparison

In Fig. 6, AccDiffusion is compared with other training-free text-to-image gen-
eration extrapolation methods, such as MultiDiffusion [1], ScaleCrafter [6], and
DemoFusion [4]. We provide more results in supplementary material. MultiD-
iffusion can generate seamless images but suffers severe repeated and distorted
generation. ScaleCrafter, while avoiding the repetition of astronauts, suffers from
structural distortions as highlighted in the red box, resulting in local repeti-
tion and a lack of coherence. DemoFusion tends to generate small, repeated
astronauts, with the frequency of repetition escalating with image resolution,
thereby significantly degrading image quality. Conversely, AccDiffusion demon-
strates superior performance in generating high-resolution images without such
repetitions. As Attn-SF [12] and SDXL-DI [17] cannot alleviate the repetition
issue, their qualitative results are not compared here.

4.4 Ablation Study

In this section, we first perform ablation studies on the two core modules pro-
posed in this paper, and then discuss the settings of the threshold for the binary
mask in Eq. (5) and the threshold c for deciding patch-content-aware prompt in
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(c) Demofusion (d) AccDiffusion (Ours)

(a) MultiDiffusion (b) ScaleCrafter

2048×2048 4096×2048

2048×4096 4096×4096 

2048×2048 4096×2048

2048×4096 4096×4096 

2048×2048 4096×2048

2048×4096 4096×4096 

2048×2048 4096×2048

2048×4096 4096×4096 

Prompt: Astronaut on Mars During sunset.

Fig. 6: Qualitative comparison of our AccDiffusion with existing training-free image
generation extrapolation methods [1, 4, 6]. We draw a red box upon the generated
images to highlight the repeated objects. Best viewed zoomed in.

Eq. (8). All experiments are carried out at a resolution of 40962 (16×). Consider-
ing the fact that existing quantitative metrics are unable to accurately reflect the
extent of object repetition, we choose to provide visualizations to demonstrate
the effectiveness of our core modules in preventing repeated generation.
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P D P D P D P D

Fig. 7: Ablations of Patch-content-aware prompts ( P ) and Dilated sampling with
window interaction ( D ). The “%”/“!” denotes removing/preserving the component.
The repeated objects are highlighted by a red box. Best viewed zoomed in.

Table 2: Statistics of cross-attention maps M using prompt y = “Astronaut on mars
during sunset.” as an example. Each word {yj}6j=1 has a cross-attention map {M:,j}

6
j=1.

Statistics “Astronaut” “on” “mars” “during” “sunset” “.”
(j = 1) (j = 2) (j = 3) (j = 4) (j = 5) (j = 6)

Min(M:,j) 0.1274 0.0597 0.2039 0.0457 0.0921 0.0335
Mean(M:,j) 0.1499 0.0676 0.2533 0.0521 0.1189 0.0386
Max(M:,j) 0.2096 0.0779 0.2979 0.0585 0.1499 0.0419

Ablations on Core Modules. As illustrated in Fig. 7, the absence of any
module leads to a decline in generation quality. Without patch-content-aware
prompts, the resulting image contains numerous repeated small objects, empha-
sizing the importance of patch-content-aware prompts in preventing the gen-
eration of repetitive elements. Conversely, without our window interaction in
dilated sampling, the generated small object becomes unrelated to the image,
indicating that dilated sampling with window interaction enhances the image’s
semantic consistency and suppresses repetition. The maximum number of re-
peated objects is produced when both modules are removed, while employing
both modules simultaneously generates an image free of repetitions. This implies
that the two modules work together to effectively alleviate repetitive objects.

Ablations on Hyper-Parameters. As depicted in Table 2, there is a signifi-
cant variation in the range of different cross-attention maps Mj . When using a
fixed threshold for these maps, two scenarios may occur. If the threshold is too
high, some words will not have highly responsive regions in their corresponding
attention maps, resulting in their absence from the patch-content-aware prompt.
Conversely, if the threshold is too low, the entire attention map consists of highly
responsive regions, causing those words to consistently appear in the patch-
content-aware prompt. By considering the average M:,j , we can ensure that
each word has suitable highly responsive regions, as demonstrated in Fig. 4(b).
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𝑐 = 0.0 𝑐 = 0.1 𝑐 = 0.2 𝑐 = 0.3

𝑐 = 0.8 𝑐 = 0.9 𝑐 = 1.0

𝑐 = 0.4 𝑐 = 0.5

𝑐 = 0.6 𝑐 = 0.7

Fig. 8: Visual results of different threshold c, prompted by “A cute corgi on the lawn.”
The repeated objects are highlighted with a red box and the detail degradation is
stressed with a blue box. Best viewed zoomed in.

Recall in Eq. (8), the c determines whether the proportion of a highly respon-
sive region for a word yj surpasses the threshold required for inclusion in the
prompts of patch zit. A very small value of c leads to more words being included
in the patch prompt, potentially causing object repetition. Conversely, a very
large value of c simplifies the patch prompt, which may lead to degradation of
details. Our analysis is demonstrated in Fig. 8. It should be noted that this is a
user-specific hyper-parameter, adjustable to suit different application scenarios.

5 Limitations and Future work

AccDiffusion is limited in: (1) As it follows the DemoFusion pipeline, similar
drawbacks arise such as inference latency from progressive upscaling and over-
lapped patch-wise denoising. (2) AccDiffusion focuses on image generation ex-
trapolation, meaning the fidelity of high-resolution images depends on the pre-
trained diffusion model. (3) Relying on LDMs’ prior knowledge of cropped im-
ages, it may produce local irrational content in sharp close-up image generation.

Future studies could explore the possibility of developing non-overlapped
patch-wise denoising techniques for efficiently generating high-resolution images.

6 Conclusion

In this paper, we propose AccDiffusion to address the object-repeated generation
issue in higher-resolution image generation without training. AccDiffusion first
introduces patch-content-aware prompts, which makes the patch-wise denoising
more accurate and can avoid repeated generation from the root. And then we
further propose dilated sampling with window interaction to enhance the global
consistency during higher-resolution image generation. Extensive experiments,
including qualitative and quantitative results, show that AccDiffusion can suc-
cessfully conduct higher-resolution image generation without object repetition.
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